

How and when surrogate endpoints may help in cardiovascular drug approval trials?

Paulus Kirchhof

Director, Department of Cardiology, University Heart and Vascular Center Hamburg, Germany German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck Institute of Cardiovascular Sciences, University of Birmingham, UK Chairman, AFNET, Münster, Germany p.kirchhof@uke.de

The future of clinical trials in cardiovascular medicine

Aims of revised guidelines for clinical trials

Based on key scientific and ethical principles, and focused on issues that materially influence the well-being of trial participants and reliability of clinical trial results.

Clear, concise, consistent and proportionate, recognizing that there are risks associated with both usual clinical practice and a lack of reliable evidence on intervention effects.

Forward looking, fostering innovation in health interventions and trial methods, including the appropriate use of routine healthcare data, digital technology, and direct-to-patient designs.

Promoting trials that are relevant to a broad and varied population; assuring diversity of participants and funded researchers (e.g. with appropriate sex, age, racial, ethnic and socioeconomic diversity).

Flexible, widely applicable, utilizable & durable, across disease areas, intervention types, development phases, trial designs, geographies and time.

ESC/AHA/ACC/WHF joint opinion Eur Heart J 44:931-4.(2023) doi:10.1093/eurheartj/ehac633

Streamline, but also collect more information

Moons P, et al. Eur Heart J 44:3405-22.(2023) doi:10.1093/eurheartj/ehad514

- 1. Established surrogates
- 2. Better detection of events, composite primary outcomes
- 3. New, quantitative, disease process-related surrogates
 - 1. Arrhythmia burden, LV function
 - 2. the potential of circulating biomolecules

1. Established surrogates

- 2. Better detection of events, composite primary outcomes
- 3. New, quantitative, disease process-related surrogates
 - 1. Arrhythmia burden, LV function
 - 2. the potential of circulating biomolecules

Cardiovascular surrogate outcomes 25 years ago

Blood pressure LDL cholesterol / non-HDL cholesterol Blood glucose Recurrent atrial arrhythmia

All are quantitative, objectively measurable, and disease process-related

Temple R. *JAMA* 282:790-5.(1999)

Association of body mass index, systolic blood pressure and non-HDL cholesterol with CVD and all-cause mortality

Individuals with CVD at baseline were excluded. Age was used as the time scale. All five risk factors were included in the models together with use of antihypertensive medications.

Magnussen C, et al Global Cardiovascular Risk Consortium N Engl J Med 389:1273-85.(2023) doi:10.1056/NEJMoa2206916

Association of LDL cholesterol and CVD, treatment effect of statins

Brunner FJ, et al. *Lancet* 394:2173-83.(2019) doi:10.1016/S0140-6736(19)32519-X LaRosa JC, et al. *N Engl J Med* 352:1425-35.(2005)

The FDA-NIH Perspective: Response Biomarker

Definition

A biomarker used to show that a biological response, potentially beneficial or harmful, has occurred in an individual who has been exposed to a medical product or an environmental agent.

- Pharmacodynamic biomarker: A response biomarker that indicates biologic activity of a medical product or environmental agent without necessarily drawing conclusions about efficacy or disease outcome or necessarily linking this activity to an established mechanism of action. Potential uses of a pharmacodynamic biomarker include establishing proof-of-concept, assisting in dose selection or measuring a response to medical products or environmental agents, including the use as a measure of potential harm. In some cases, such measures may be secondary endpoints in clinical trials and may be described in labeling.
- Surrogate endpoint biomarker: A response biomarker that is an endpoint used in clinical trials as a substitute for a direct measure of how a patient feels, functions, or survives. A surrogate endpoint does not measure the clinical benefit of primary interest in and of itself, but rather is expected to predict that clinical benefit or harm based on epidemiologic, therapeutic, pathophysiologic, or other scientific evidence.

Surrogate outcomes for cardiovascular drug development

Surrogate (response) outcomes can be used

- to guide clinical development (target populations, early termination) and
- to accelerate limited approval with continued safety evaluation.

Cardiovascular surrogates accepted by FDA 2023

Reduction of GL-3 inclusions in renal biopsies (Fabry Disease) Blood pressure reduction (mechanism-agnostic) Serum LDL cholesterol cholesterol reduction Serum HbA1c reduction Serum phosphate, potassium, and sodium

All are quantitative, objectively measurable, and disease process-related

https://www.fda.gov/drugs/development-resources/table-surrogate-endpoints-were-basis-drug-approval-or-licensure, accessed on 14 Nov 2023 https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-clinical-investigation-medicinal-products-treatment-hypertension_en.pdf

- 1. Established surrogates (BP, LDL cholesterol, HbA1c)
- 2. Better detection of events, composite primary outcomes
- 3. New, quantitative, disease process-related surrogates
 - 1. Arrhythmia burden, LV function
 - 2. the potential of circulating biomolecules

MRI-detected brain lesions and silent strokes

Haeusler KG, et al. Circulation 145:906-15.(2022)

MRI-detected brain lesions as part of an enhanced stroke outcome

Study flow diagram for the OCEAN trial.

Verma A, et al. *Am Heart J* 197:124-32 (2018)

Combine outcomes that are modified by intervention

Kirchhof P, et al. *N Engl J Med* 383:1305-16.(2020) doi:10.1056/NEJMoa2019422

- 1. Established surrogates (BP, LDL cholesterol, HbA1c)
- 2. Better detection of events, composite primary outcomes
- 3. New, quantitative, disease process-related surrogates
 - 1. Arrhythmia burden, LV function
 - 2. the potential of circulating biomolecules

Left ventricular function as a surrogate outcome

Can only improve in patients with reduced ejection fraction ("HFrEF") Quantifiable (with 5%-10% variability) by echocardiogram or magnetic resonance tomography Directly affected by some interventions (CRT, inotropic and myofilament drugs, AF ablation) Indirectly affected by established heart failure medications (RAAS + b blockers, SGLT2i)

LVEF is quantitative, objectively measurable, and related to some disease processes

Relation of AF burden with outcomes

	AF burden (estimated)	Stroke rate without anticoagulation	Stroke rate with anticoagulation	Concomitant Heart Failure, Reduction in HF events	
Persistent and permanent AF	70 – 100%	3%/year	1.5%/year	30-50% of nationts	
Paroxysmal AF	11-20%	2%/year	1%/year	30-50% of patients	
AF on early rhythm control therapy	0.4 – 5%	?	0.6%/year	30% reduction	
Device-detected AF	0.2 – 0.5%	1%/year	0.7%/year	?	

Goette A, et al. *Circ Arrhythm Electrophysiol* 5:43-51.(2012) Vanassche T, et al. Eur Heart J 36:281-7a. (2015) Charitos EI, et al. *J Am Coll Cardiol*. 63:2840-2848 (2014) Diederichsen SZ, et al. *J Am Coll Cardiol* 74:2771-81.(2019) Kirchhof P, et al. *N Engl J Med* 383:1305-16.(2020) Eckardt L, et al. Eur Heart J 43:4127-4144 (2022) Andrade JG, et al. *N Engl J Med* (2022) Kirchhof P, et al. *N Engl J Med* 389:1167-79 (2023) Healey JS, et al. N Engl J Med, published 12 Nov (2023) Becher N, et al. *Eur Heart J* (2023) doi:10.1093/eurheartj/ehad771 McIntyre WF, et al. Circulation.(2023) doi:10.1161/CIRCULATIONAHA.123.067512 AF burden, and its reduction on treatment, could be a new surrogate parameter for drug with effects on heart rhythm (antiarrhythmic drugs, heart failure drugs, also metabolic and antiinflammatory drugs).

AF burden is quantitative, objectively measurable, and potentially disease process-related

Pictograms taken from ESC AF guidelines, Hindricks G, et al. Eur Heart J 42:373-498.(2021)

- 1. Established surrogates (BP, LDL cholesterol, HbA1c)
- 2. Better detection of events, composite primary outcomes
- 3. New, quantitative, disease process-related surrogates
 - 1. Arrhythmia burden, LV function
 - 2. the potential of circulating biomolecules

From Clinical to Personalised Cardiovascular Medicine

ESC CRT position paper. *Eur Heart J*. 35:3250-7 (2014)

Biomolecule	Potential for Patient Selection	Potential as Surrogate
		(Response) Outcome
Troponin I and T	Chronic elevations identify patients	ACS / mycardial damage (integral
	at riks of cardiovascular events	over several measurements)

Biomolecule	Potential for Patient Selection	Potential as Surrogate
		(Response) outcome
Troponin I and T	Chronic elevations identify patients	ACS / mycardial damage (integral
	at riks of cardiovascular events	over several measurements)
Brain natriuretic peptide,	elevated upon cardiac load (heart	mixed signals but generally lower
NT-proBNP	failure and atrial fibrillation)	on heart failure and atrial fibrillation
		therapies

Biomolecule	Potential for Patient Selection	PotentialasSurrogate(Response)Outcome
Troponin I and T	Chronic elevations identify patients at riks of cardiovascular events	ACS / mycardial damage (integral over several measurements)
Brain natriuretic peptide, NT-proBNP	elevated upon cardiac load (heart failure and atrial fibrillation)	mixed signals but generally lower on heart failure and atrial fibrillation therapies
C reactive protein	prognostic effect in coronary artery disease.	Possibleresponsebiomarker(unspecific)forantinflammatorytherapies

Biomolecule	Potential for Patient Selection	PotentialasSurrogate(Response)Outcome
Troponin I and T	Chronic elevations identify patients at riks of cardiovascular events	ACS / mycardial damage (integral over several measurements)
Brain natriuretic peptide, NT-proBNP	elevated upon cardiac load (heart failure and atrial fibrillation)	mixed signals but generally lower on heart failure and atrial fibrillation therapies
C reactive protein	prognostic effect in coronary artery disease.	Possible response biomarker (unspecific) for antinflammatory therapies
Bone morphogenetic protein 10	secreted, atrial-specific biomolecule elevated in atrial fibrillation	Rhythm and atrial fibrillation-related outcomes

Biomolecule	Potential for Patient Selection	PotentialasSurrogate(Response)Outcome
Troponin I and T	Chronic elevations identify patients at riks of cardiovascular events	ACS / mycardial damage (integral over several measurements)
Brain natriuretic peptide, NT-proBNP	elevated upon cardiac load (heart failure and atrial fibrillation)	mixed signals but generally lower on heart failure and atrial fibrillation therapies
C reactive protein	prognostic effect in coronary artery disease.	Possible response biomarker (unspecific) for antinflammatory therapies
Bone morphogenetic protein 10	secreted, atrial-specific biomolecule elevated in atrial fibrillation	Rhythm and atrial fibrillation-related outcomes
Fibroblast growth factor 23, galectin-3, and other biomolecules linked to fibrosis	cardiac fibrosis	Antifibrotic therapies, prevention of diastolic dysfunction, HFpEF and sudden death (?)

Biomolecule	Potential for Patient Selection	Potential as Surrogate (Response) Outcome
Troponin I and T	Chronic elevations identify patients at riks of cardiovascular events	ACS / mycardial damage (integral over several measurements)
Brain natriuretic peptide, NT-proBNP	elevated upon cardiac load (heart failure and atrial fibrillation)	mixed signals but generally lower on heart failure and atrial fibrillation therapies
C reactive protein	prognostic effect in coronary artery disease.	Possible response biomarker (unspecific) for antinflammatory therapies
Bone morphogenetic protein 10	secreted, atrial-specific biomolecule elevated in atrial fibrillation	Rhythm and atrial fibrillation-related outcomes
Fibroblast growth factor 23, galectin-3, and other biomolecules linked to fibrosis	cardiac fibrosis	Antifibrotic therapies, prevention of diastolic dysfunction, HFpEF and sudden death (?)
Genetic defects (mutations, polygenic risk scores)	Good prognostic information for myocardial infar ction, stroke, AF, heart failure	

Surrogate outcomes for cardiovascular drug development

- Useful surrogates are quantitative, objectively measurable, and related to disease processes.
- They can be used
- to guide clinical development (target populations, early termination) and
- to accelerate limited approval with continued safety evaluation.
- Cardiovascular surrogates have not changed much since 1999.
- New disease mechanisms invite evaluation of additional surrogates, including
- atrial fibrillation burden,
- left ventricular function, and
- circulating biomolecules.

There is no surrogate for safety.